Skip to main content

Mô hình nguyên nhân (formative) và kết quả (reflective) trong PLS-SEM

 Trước khi đi vào nội dung bài viết này, cần đảm bảo rằng bạn đã biết và hiểu đúng thuật ngữ các yếu tố trong một mô hình PLS-SEM đã được trình bày tại bài viết Các yếu tố trong một mô hình cấu trúc tuyến tính PLS-SEM. Ở phần cuối bài viết, chúng ta đã nói đến hai loại lý thuyết cần để xây dựng mô hình đường dẫn PLS-SEM là lý thuyết đo lường và lý thuyết cấu trúc.

mo hinh nguyen nhan ket qua pls-sem

Lý thuyết đo lường trong PLS-SEM chỉ rõ cách các biến tiềm ẩn (các biến nghiên cứu) được đo như thế nào. Có hai cách khác nhau để đo lường các biến tiềm ẩn là đo lường kết quả (reflective measurement) và đo lường nguyên nhân (formative measurement). Biến nghiên cứu Y1 và Y2 trong mô hình đường dẫn bên dưới được mô phỏng dựa trên mô hình đo lường nguyên nhân (formative measurement model). Trong mô hình đo lường nguyên nhân, mũi tên chỉ hướng đi từ các biến quan sát tới biến nghiên cứu (x1, x2, x3 đến Y1 và x4, x5, x6, đến Y2).

mo hinh nguyen nhan ket qua pls-sem

Ngược lại, Y3 trong hình được mô phỏng dựa trên mô hình đo lường kết quả (reflective measurement model). Với các biến quan sát kết quả, hướng của các mũi tên đi từ biến nghiên cứu đến các biến quan sát. Với mô hình đo lường kết quả, luôn có một phần sai số được kết hợp với mỗi biến quan sát, trong khi điều này không xảy ra với mô hình đo lường nguyên nhân. Đo lường nguyên nhân được giả định là không có sai số (error free).

1. Mô hình đo lường kết quả reflective

Trong mô hình đo lường kết quả, các biến quan sát được tạo ra bởi cùng khái niệm nghiên cứu (tức là nó xuất phát từ cùng một yếu tố mẹ), và các biến quan sát này cần liên quan chặt chẽ với nhau. Ngoài ra, các biến quan sát trong mô hình đo lường kết quả có thể hoán đổi vai trò cho nhau, và nếu bỏ bất kỳ biến quan sát nào khỏi đo lường nhìn chung cũng không thay đổi ý nghĩa của biến tiềm ẩn mẹ.

mo hinh nguyen nhan ket qua pls-sem

Ví dụ: Để đo lường sự hài lòng của một khách hàng sử dụng dịch vụ booking xe ôm của Grab. Biến tiềm ẩn là "sự hài lòng", các biến quan sát được xây dựng theo mô hình đo lường kết quả sẽ gồm:

x1: Tôi đánh giá cao dịch vụ booking xe ôm của Grab

x2: Trong lần booking sau, tôi sẽ vẫn booking dịch vụ của Grab

x3: Tôi sẽ giới thiệu cho bạn bè sử dụng dịch vụ booking xe ôm của Grab

Mối quan hệ giữa biến tiềm ẩn và biến quan sát thường được mô hình hóa và được thể hiện trong phương trình như sau:

xi = pi*Y + ei

mo hinh nguyen nhan ket qua pls-sem

Trong đó:

  • xi: biến quan sát
  • Y: biến tiềm ẩn
  • pi: hệ số hồi quy thể hiện độ mạnh của mối quan hệ giữa biến quan sát với biến tiềm ẩn. Trong kết quả xử lý trên SMARTPLS, hệ số này gọi là outer loading.
  • ei: sai số ngẫu nhiên

2. Mô hình đo lường nguyên nhân formative

Trong mô hình đo lường nguyên nhân, các biến quan sát được giả định là tạo ra biến tiềm ẩn mẹ thông qua liên kết tuyến tính và không đòi hỏi có sự tương quan giữa chúng. Đặc tính quan trọng của biến quan sát nguyên nhân là chúng không có chúng không hoán đổi lẫn nhau được bởi từng biến quan sát thể hiện một khía cạnh cụ thể của biến tiềm ẩn mẹ. Chính vì điều này, việc loại bỏ một biến quan sát có khả năng rất cao làm thay đổi tính chất của biến tiềm ẩn mẹ.

mo hinh nguyen nhan ket qua pls-sem

Ví dụ: Để đo lường sự hài lòng của một khách hàng sử dụng dịch vụ booking xe ôm của Grab. Biến tiềm ẩn là "sự hài lòng", các biến quan sát được xây dựng theo mô hình đo lường nguyên nhân sẽ gồm:

x1: Tài xế khá thân thiện

x2: Quy trình booking xe dễ thực hiện

x3: Dịch vụ chăm sóc khách hàng hỗ trợ tốt

Mối quan hệ giữa biến tiềm ẩn và biến quan sát được mô hình hóa và được thể hiện trong phương trình như sau:

Y = w1*x1 + w2*x2 + w3*x3+ xn*xn + z

mo hinh nguyen nhan ket qua pls-sem

Trong đó:

  • xi: biến quan sát
  • Y: biến tiềm ẩn
  • wi: hệ số hồi quy thể hiện độ mạnh của mối quan hệ giữa biến quan sát với biến tiềm ẩn. Trong kết quả xử lý trên SMARTPLS, hệ số này gọi là outer weight.
  • zi: phần dư của phép hồi quy

Từ ví dụ dịch vụ booking xe ở trên có thể thấy, cùng đo lường một yếu tố là "sự hài lòng của khách hàng" sử dụng dịch vụ booking xe ôm của Grab nhưng hai cách thức xây dựng biến quan sát đo lường hoàn toàn khác nhau. Nếu bạn đang cảm thấy cách giải thích về mặt lý thuyết ở trên hơi khó hiểu hoặc bạn còn đang lờ mờ trong việc xác định đâu là đo lường kết quả, bạn có thể hiểu đơn giản hơn thế này:

- Đo lường kết quả: Các biến quan sát là biểu hiện, hành vi, thái độ, tâm lý của đối tượng khi đối tượng có được biến tiềm ẩn. Ở ví dụ dịch vụ booking xe, khi một người hài lòng với dịch vụ, họ sẽ: có thái độ đánh giá tốt dịch vụ, có hành vi tiếp tục sử dụng dịch vụ nếu lần sau có nhu cầu, có hành vi giới thiệu người khác sử dụng dịch vụ. Ở đây, chúng ta thấy được đánh giá tốt dịch vụ - tiếp tục dùng dịch vụ - giới thiệu người khác là những yếu tố có sự liên kết (tương quan) nhau khá mạnh trên thực tế khi một người khách hàng hài lòng với dịch vụ từ nhà cung cấp. Hoặc một ví dụ khác, để đo lường biến tiềm ẩn là "áp lực môi trường làm việc" tại một công ty, mô hình đo lường kết quả được sử dụng với các biến quan sát: (1) thường xuyên rơi vào trạng thái căn thẳng trong công việc, (2) công việc đòi hỏi thường xuyên làm ngoài giờ, (3) bầu không khí làm việc ở công ty thường khá nặng nề. Có thể thấy cả ba biến quan sát này đều là các biểu hiện được sinh ra bởi đối tượng là một môi trường làm việc có áp lực.

- Đo lường nguyên nhân: Các biến quan sát là các thành phần cấu tạo nên biến tiềm ẩn. Ở ví dụ booking xe, khi một người hài lòng với dịch vụ, chúng ta sẽ xem xét sự hài lòng tổng quát đó qua việc họ có hài lòng từng thành phần của dịch vụ không: có hài lòng với thái độ nhân viên (tài xế) không, có hài lòng với quy trình làm việc không, có hài lòng với dịch vụ chăm sóc khách hàng không. Ở đây, có thể dễ dàng thấy được rằng, thái độ nhân viên - quy trình làm việc - dịch vụ chăm sóc khách hàng là những yếu tố riêng biệt, không có sự ràng buộc phải tương quan với nhau. Khách hàng có thể hài lòng về thái độ nhân viên nhưng hoàn toàn không hài lòng về quy trình làm việc.

3. Khi nào sử dụng mô hình đo lường kết quả hoặc nguyên nhân?

Không có câu trả lời rõ ràng cho câu hỏi này vì biến tiềm ẩn có thể được đo lường theo cách này hoặc cách khác, ví dụ như trường hợp đo lường "sự hài lòng với dịch vụ booking xe". Nhưng trên thực tế, các nhà nghiên cứu ưa chuộng sử dụng mô hình đo lường kết quả reflective hơn bởi nó thông thường dễ xây dựng biến quan sát hơn.

Trong mô hình đo lường kết quả, các biến quan sát có thể hoán đổi vai trò cho nhau, việc thiếu một biến quan sát cũng không làm ảnh hưởng nghiêm trọng đến tính chất của biến tiềm ẩn. Ngược lại, ở mô hình đo lường nguyên nhân, mỗi biến quan sát đại diện cho một thành phần riêng biệt của biến tiềm ẩn nên các biến quan sát không thể hoán đổi vai trò cho nhau. Việc thiếu một biến quan sát trong mô hình đo lường nguyên nhân sẽ làm ảnh hưởng nghiêm trọng đến tính chất biến tiềm ẩn mẹ. Do đó, với mô hình đo lường nguyên nhân, nhà nghiên cứu cần nỗ lực hết sức để tìm được đầy đủ các biến quan sát tương ứng với tất cả các thành phần cấu tạo nên biến tiềm ẩn mẹ. Ví dụ: đo lường sự hài lòng với chất lượng dịch vụ bằng mô hình đo lường nguyên nhân, nhà nghiên cứu phải tìm đủ các yếu tố thành phần của chất lượng dịch vụ như: nhân viên, quy trình, dịch vụ chăm sóc khách hàng, giá cả, khuyến mãi,... và còn các yếu tố khác nữa. Nhà nghiên cứu rất dễ để sót yếu tố thành phần, điều này sẽ làm sai lệch đi tính chất của biên tiềm ẩn mẹ là "sự hài lòng dịch vụ".

Nguồn: https://hocnghiencuu.com/mo-hinh-nguyen-nhan-formative-va-ket-qua-reflective-trong-pls-sem/

Popular posts from this blog

Thông báo về việc Xác nhận tham dự Lễ Tốt nghiệp UEH đợt 2 năm 2025

  Đại học Kinh tế Thành phố Hồ Chí Minh thông báo về việc xác nhận tham dự lễ Tốt nghiệp và cập nhật dữ liệu thông tin cá nhân (email và số điện thoại) như sau:   1. Đối tượng và thời gian xác nhận tham dự lễ Tốt nghiệp –  Đối tượng xác nhận: Người học bậc đại học xét tốt nghiệp đợt 1 (tháng 4), đợt 2 (tháng 6) năm 2025, và các khóa sau đại học xét tốt nghiệp đợt 3 (tháng 6, 7) năm 2025. – Thời gian xác nhận tham dự lễ Tốt nghiệp: + Người học tốt nghiệp Đại học:   Từ ngày 20/6/2025 đến hết ngày 08/7/2025. + Người học tốt nghiệp Thạc sĩ:   Từ ngày 20/7/2025 đến hết ngày 27/7/2025 – Người học xác nhận tham dự lễ Tốt nghiệp tại portal cá nhân ( https://student.ueh.edu.vn ), đăng nhập tài khoản và chọn mục “Đăng  ký tham dự lễ Tốt nghiệp”. – Nghiên cứu sinh xác nhận tham dự lễ Tốt nghiệp qua chuyên viên quản lý từ ngày  20/7/2025 đến hết ngày 03/8/2025  (đối với nghiên cứu sinh đã xét và công nhận tốt nghiệp đợt 3,4/2025). Lưu ý:  Người...

Lịch bảo vệ luận văn thạc sĩ từ 2.1.2025 đến 10.1.2025

  Địa chỉ cơ sở A: 59C Nguyễn Đình Chiểu, P.Võ Thị Sáu, Q.3, TP. Hồ Chí Minh. Nhập thông tin cần tìm: Ngày bảo vệ Phòng Giờ Mã học viên Họ tên học viên Ngành Hướng ngành Khóa học 02/01/2025 A106 13:30 522202120565 Trần Minh Tuấn Tài chính - Ngân hàng Hướng ứng dụng 02/01/2025 A106 14:00 522202120567 Trần Minh Uyên Tài chính - Ngân hàng Hướng ứng dụng 02/01/2025 A106 14:30 522202120571 Hoàng Thị Vy Tài chính - Ngân hàng Hướng ứng dụng 02/01/2025 A106 15:00 522202120572 Nguyễn Thị Yến Tài chính - Ngân hàng Hướng ứng dụng 02/01/2025 A202 13:30 522202200456 Nguyễn Thành Vũ Luật kinh tế Hướng ứng dụng 02/01/2025 A202 14:00 522202200340 Trần Hoàng Chương Luật kinh tế Hướng ứng dụng 02/01/2025 A202 14:30 522202200372 Tô Quốc Khá Luật kinh tế Hướng ứng dụng 02/01/2025 A202 15:00 522202200452 Nguyễn Hoàng Việt Luật kinh tế Hướng ứng dụng 02/01/2025 A202 15:30 522202200424 Nguyễn Vũ Thắng Luật kinh tế Hướng ứng dụng 03/01/2025 A106 08:00 522202120554 Đặng Thị Bích Sen Tài chính - Ngân hàng H...

Lịch bảo vệ luận văn thạc sĩ ngày 17 và 18.12.2024

  17/12/2024 A202 08:00 522202111117 Phạm Hoàng Chương Tài chính - Ngân hàng Hướng ứng dụng 17/12/2024 A202 08:30 522202111228 Nguyễn Thị Hà Phương Tài chính - Ngân hàng Hướng ứng dụng 17/12/2024 A202 09:00 522202111144 Đào Phương Duyên Tài chính - Ngân hàng Hướng ứng dụng 17/12/2024 A202 09:30 522202111162 Nguyễn Văn Hồng Tài chính - Ngân hàng Hướng ứng dụng 17/12/2024 A202 10:00 522202111294 Lại Thị Thanh Trúc Tài chính - Ngân hàng Hướng ứng dụng 18/12/2024 A202 08:00 522202251069 Trần Thị Thu Hà Quản trị nhân lực Hướng ứng dụng 18/12/2024 A202 08:30 522202251073 Nguyễn Thu Hương Quản trị nhân lực Hướng ứng dụng 18/12/2024 A202 09:00 522202251074 Nguyễn Thị Phương Linh Quản trị nhân lực Hướng ứng dụng 18/12/2024 A202 09:30 522202251075 Vũ Khánh Linh Quản trị nhân lực Hướng ứng dụng